Key enabler: Modular Special Instructions (SIs)

- Problem in state-of-the-art Reconfigurable Processors: Monolithic SIs
 - Our Approach: Reduced reconfiguration overhead but still fast execution due to SI upgrades
 - Example SI for H.264 Motion Estimation: Sum of Abs. Hadamard-Transformed Differences: SATD

Hierarchical Composition for modular SIs: SIs, Molecules, Atoms

- Problem: Increased Parallelism implies larger reconfiguration overhead
 - Rotation Manager: Our Novel Run-Time System

Hardware Implementation: Atom Framework and FPGA Prototype

Prototyping with a Virtex-4 LX 160, using a Board from Silica/Avnet with Further Peripherals (Video etc.)

Atom Framework: Infrastructure for Atom Computation and Communication:

Extending a GPP Pipeline towards RISPP

Main Contributions

1. Solved the problem “Parallelism vs. Reconfiguration Overhead”. We can provide both by upgrading the SIs
2. Achieving noticeably better performance than state-of-the-art (see right box)
3. Providing very high adaptivity that is demanded for changing control flow or changing multi-tasking environments

Results and Conclusions

- Performance Results and Comparisons: 26x faster than a GPP (Leon 2) when using 8 Atoms
 - Up to 2.38x faster than state-of-the-art reconfigurable Processors (Molen)
 - Depending on the size of the SIs, up to 7.19x faster than the Proteus reconfigurable processor

Execution Details: A timeline that shows the execution of 2 hot spots with their temporary SI performance and how they are upgraded

RISPP: Selected Publications